Welcome to the City of Livermore Water Resources Division

2017 CAMP, WRD Presentation Maintenance Services Center, Sept 18, 2017

How We are Organized

- Administration
- Water/Recycled Systems
- Source Control
- Collection Systems
- Wastewater Operations
- Maintenance
- Laboratory

101 West Jack London Blvd

City of Livermore Municipal Water Utility

- Potable Water System
- Recycled Water System

The Livermore Water System

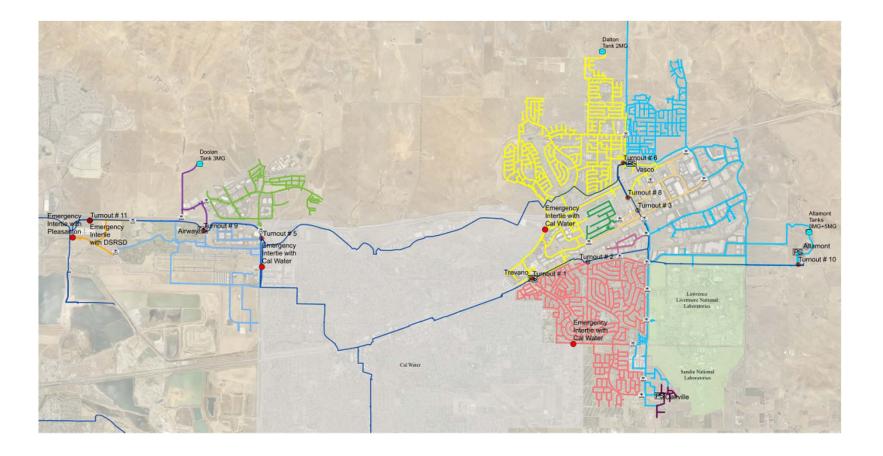
- Potable and Recycled water supplies
- Potable system supplies approximately 1/3 of the City
- Recycled system supplies the Western portion of the City

The Livermore Potable Water System

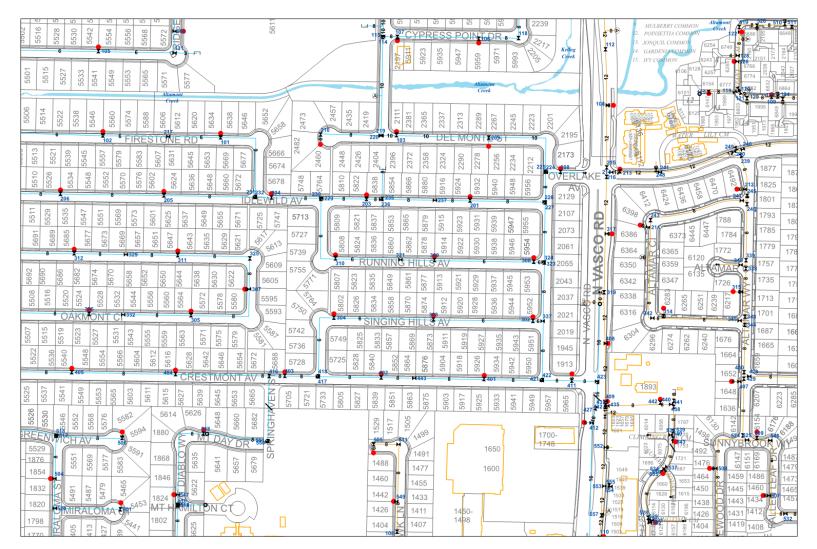
- Established in 1963 as part of the Water Resources Division
- Initially supplied 20 million gallons of potable water to 372 customers through 3 miles of pipe and a single reservoir

• In 2016 the potable system supplied nearly 1.5 billion gallons of water to 28,782 customers through 155 miles of pipe

Pump Stations and Reservoirs



- Livermore receives treated water from Zone 7 Water Agency
- The water is delivered to five pump stations
- The pump stations move the water to four reservoirs
- These reservoirs provide billions of gallons of water for domestic, irrigation and fire protection use annually.



Water System Pressure Zones

A Neighborhood Map

The Recycled Water System

• The Recycled water system was established in early 1960's to irrigate fields surrounding the Livermore Municipal Airport

 In 2016 Water Resources delivered nearly 300 million gallons of recycled water to Livermore customers for irrigation and fire protection purposes

The Recycled Water System

- Livermore receives recycled water from the Livermore Water Reclamation Plant
- Recycled water is pumped from the plant to two reservoirs on Doolan Road
- These reservoirs provide water for irrigation and fire protection

The Recycled Water System

Water Resources Division Source Control

- Pretreatment Program
 - Stormwater Program

Pretreatment Program

The <u>Industrial Pretreatment Program</u> is mandated under the Clean Water Act, specifically under the General Pretreatment Regulations (40 CFR 403). These regulations establish the responsibilities of federal, state and local governments, industry and the public in controlling the pollutants in wastewater

Pretreatment Program Objectives:

- Protect Livermore Water Reclamation Plant
- Protect Sanitary Sewer System
- Protect Operators and Collection System Workers
- Protect Public Health and Safety
- Prevent Harmful Discharges to the SF Bay

Stormwater Program

Stormwater runoff contains many types of pollutants from the urban landscape – including oil, pesticides, sediment and trash. In most cases stormwater runoff doesn't receive treatment – it discharges directly to storm drains, which lead to the creeks and eventually to the Bay.

Stormwater Program

The City of Livermore is covered under a <u>Municipal Regional Permit</u> (<u>MRP</u>) which requires the City to implement a Stormwater Management Plan to control NON-Stormwater Discharges.

MRP Requirements/Objectives

- Commercial and Industrial Facility Inspection Program
- Illegal Discharge Response and Abatement
- Public Outreach and Education
- New Development and Green Infrastructure Plan
- Trash/Litter Reduction

<u>HOW</u> are these objectives met:

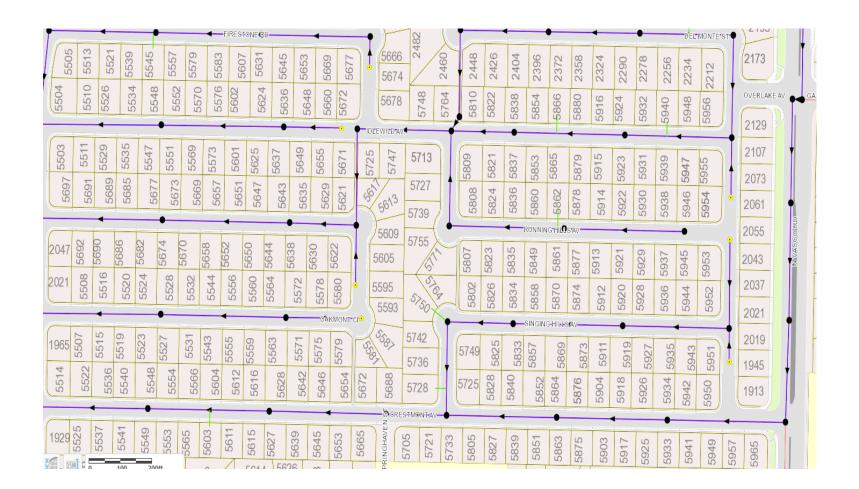
- Regulate 102 Industrial Dischargers with Wastewater
 Discharge Permits
- Conduct Facility Inspections- Permitted and Unpermitted Dischargers
- Monitor effluent from Industrial Discharges for compliance
 with pollutant limits
- Require Best Management Practices (BMPs) to reduce or eliminate introduction of pollutants

City of Livermore Collection Systems

- Sanitary Sewer System
- Storm Drainage System

Livermore's Sanitary Sewer system

- 297 miles of pipe
- 4 sewer lift stations
- 6,148 maintenance holes
- 29,800 service connections

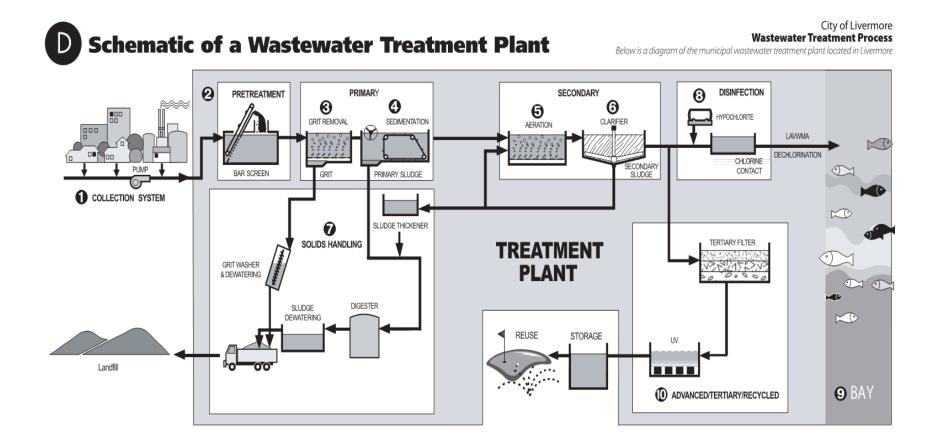


Collections system

Street View

Livermore's Storm system

- 241 Miles
- 3 Pump Stations
- 4,451 catch basins
- 181 outfall(< 12")
- 186 TCD's (Trash Capture Devices)
- SMP (Stream Maintenance Permit)
- Trash reduction plan



City of Livermore Water Reclamation Plant

Wastewater Treatment Overview


Treatment Process Overview

Treatment Process Overview

- The majority of the wastewater flows by gravity into the plant.
- For low lying areas, 4 pump stations boost the flow into the plant.
- In 2016 the Livermore Water Reclamation Plant processed nearly 6 million gallons of wastewater per day.

Treatment Process Overview

Recycled Water System

- WRD recycles up to 2.5 million gallons per day.
- Two Doolan reservoirs have a capacity of 1.9 million gallons each.

City of Livermore Water Resources Division

Asset Management Program

Making the right decision at the right time at the right costs for the right reasons

- A collection of strategies for managing infrastructure assets efficiently
- Risk reduction while maintaining Level of Service

What is an Infrastructure Asset?

Data collection

- WRD tracks nearly 80,000 assets
- Install date, Material, Length, Condition

Asset_ID	Class	InstallYear	Material	Length	Diameter	Condition
ACS5C4P6303	Force Mains	2003	PVC	33.20604	8	1
ACS5C1P7516	Force Mains	2012	PVC	109.8423	8	1
ACS5C1P0101	Force Mains	2003	PVC	161.355	8	2
ACS5C1P0105	Force Mains	2003	PVC	57.8778	8	1
ACS5C1P2748	Force Mains	2003	PVC	61.4052	8	3
ACS5C4P6302	Force Mains	2003	PVC	301.193	10	1
JLS5C2FP7538	Force Mains	2012	PVC	36.81386	12	1

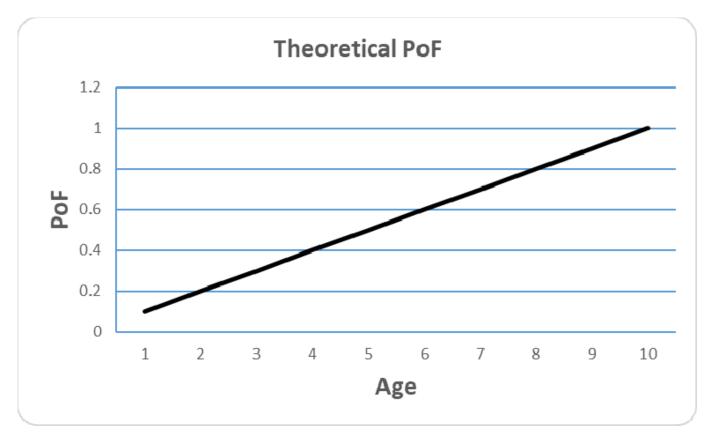
Mapping Probability of Failure

• Structural Failure

Calculating Probability of Failure

Theoretical Vs Condition Assessment

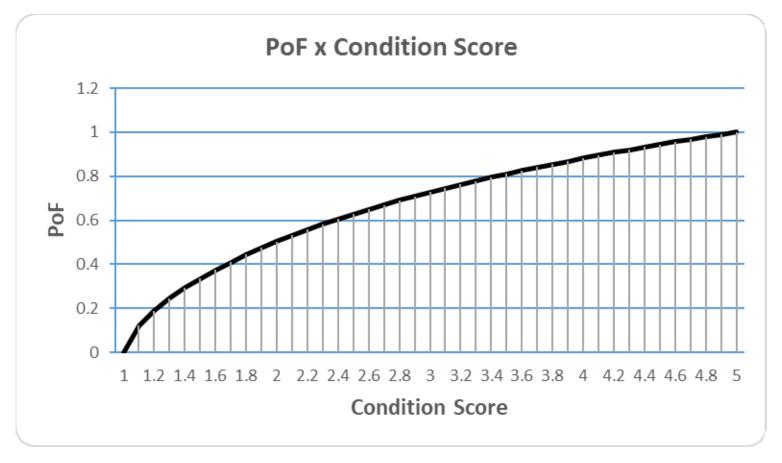
Theoretical

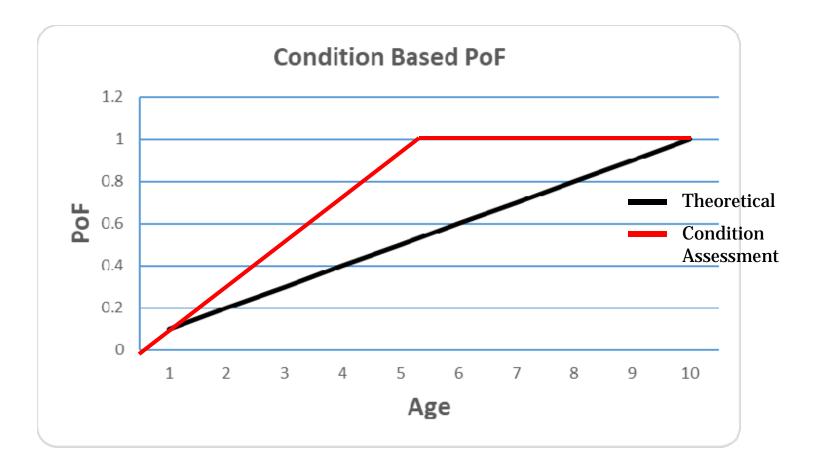

- Age Based
- Age/Useful Life = PoF
- Used as a baseline
- Inaccessible assets (water pipes)

Condition Assessment

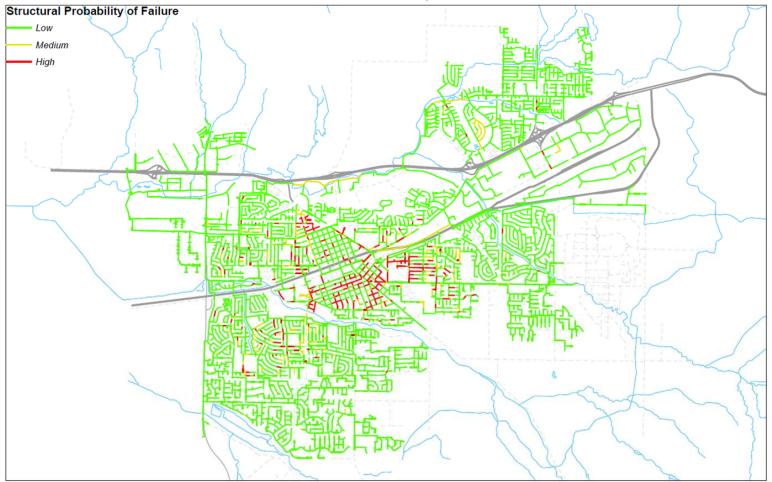
- Asset class related scoring matrices
- PoF is calculated from the condition score using a decay curve
- Remaining useful life (PoF) can increase or decrease

Calculating Probability of Failure




Condition Matrix

Pump	1	2	3	4	5
Leakage	None	Visible wear at seals, but no signs of leakage	Moisture at seals/joints	Water dripping or pooling on floor	Water squirting / Running
Corrosion / Deterioration	Like new	Some minor corrosion	Moderate corrosion, minor shaft wear	Significant corrosion / deterioration affecting integrity	Extreme corrosion, extreme casing deterioration, significant shaft wear
Vibration	None detectable	Minor vibration to touch, not visible	Visible Vibration	Vibration transferred to connecting equipment	Vibration damage, extreme rattling
Noise	No unusual noise	Slight whine/rumþle	Noticeable noise, audible from a yard away	Moderate whine/rattle	Loud, rattling due to vibration
Temperature	Cool or room temp	Warm, normal	Heat detected by hand	Uncomfortable to touch	Too hot to touch



Structural Probability of Failure

Calculating Consequence of Failure

Calculating Consequence of Failure

Triple Bottom Line

- Economic
- Environmental
- Social

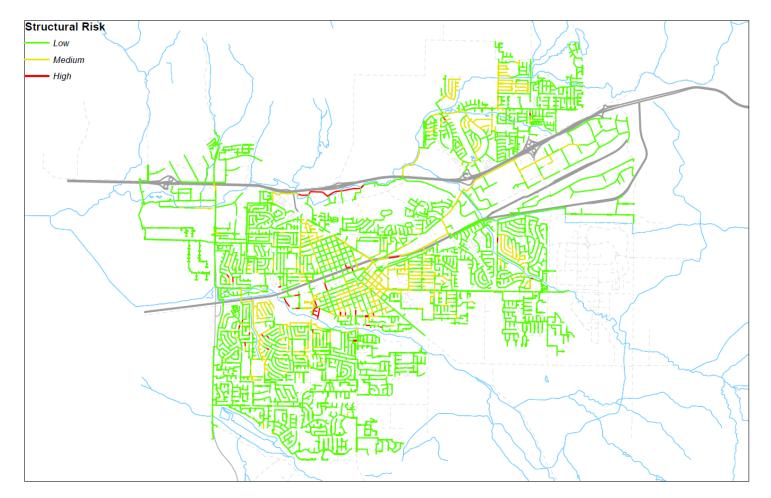
Calculating Consequence of Failure

Scoring and weighting of sewer pipes

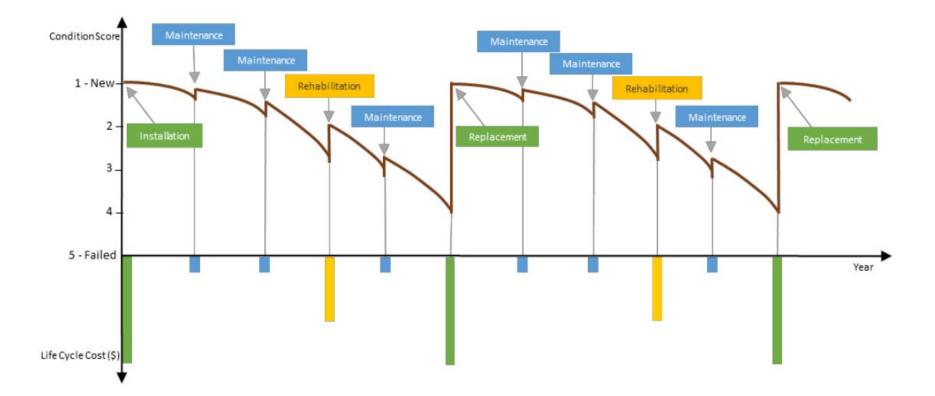
- Zoning 20%
- Street Type 20%
- Proximity to water (creek) 20%
- Pipe size 40%

Each asset receives 1 – 5 score

Consequence of Failure Consequence of Failure Low Medium High


Calculating Risk

• (PoF X CoF)



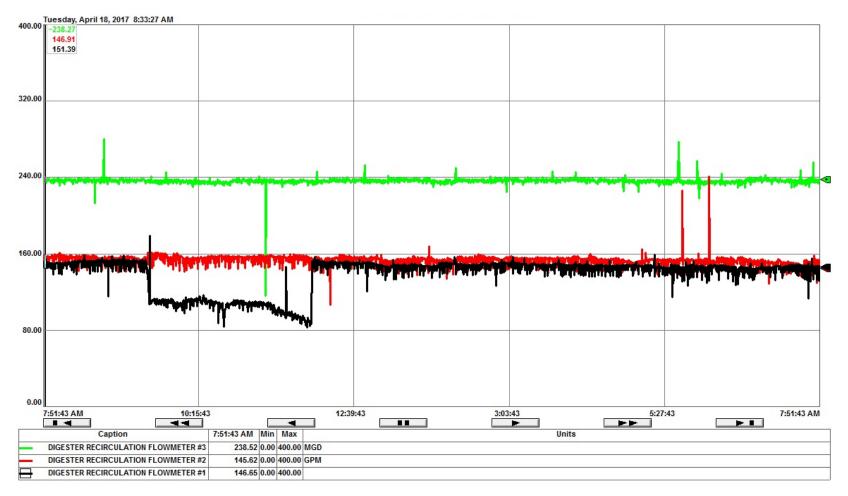
Structural Risk

Asset Level Maintenance Strategy

Condition Analysis

• CCTV examination

Condition Score



CMMS Data

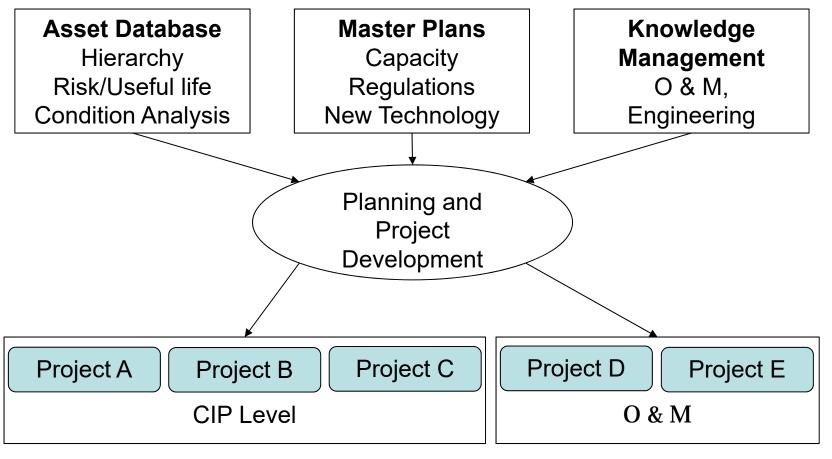
tion Controls PONENT Expired Assets	PUMP <u>G</u> et Records <u></u> Sc <u>h</u> edule	Depreciation*											<u>+</u>	<u>P</u> r <u>C</u> lo
Node					Line					Component				
iponent	V Vser Fields										6,07,662	1499230290231		
	DESCRIPTION	EQUIP_LOC		MAKE		MODEL_YEA	R PROCESS_TYP	DRIVE_TYPE	SEAL_TYPE	BELT_SIZE	OIL_TYPE	PUMP_TYPE	DRV_END_BRG	GPM
20PP002	PUMP, PRIMARY SLUDGE #2	PRIMARY AREA		MOYNO IND	INTRICC	2000	PRIMARY	BELT AND PUL	.1	(3) 3V×750	N/A	POSITIVE_DISPL	7	_
20PP003	PUMP, PRIMARY SLUDGE SPARE	PRIMARY AREA		MOYNO IND		2000	PRIMARY	BELT AND PULL		(3) 3VX750	N/A	POSITIVE_DISPL		
20PP005	PUMP, PRIMARY SLUDGE #5	PRIMARY AREA		MOYNO IND		2000	PRIMARY	BELT AND PULL.		(3) 3VX670	N/A	POSITIVE_DISPL		
20PP006	PUMP, SCUM #1	PRIMARY AREA	74	MOYNO IND		2000	PRIMARY	BELT AND PULL	. Packing	GATES 780H150		POSITIVE DISPL		
20PP007	PUMP, SCUM #2	PRIMARY AREA		MOYNO IND		2000	PRIMARY	BELT AND PULL.		GATES 780H150	N/A	POSITIVE_DISPL		
20PP008	PUMP, GRIT #1	PRIMARY AREA		WEMCO				BELT AND PULL.		5L780	HTC_SUPREME	. CENTRIFUGAL		
20PP009	PUMP, GRIT #2	PRIMARY AREA	1	WEMCO		1981		BELT AND PULL.			HTC_SUPREME	. CENTRIFUGAL		
20PP010	PUMP, P&B SUMP SOUTH	PUMP & BLOWE	R ROOM	WEMCO		06 2007		DIRECT_DRIVE		N/A		SUBMERSIBLE		
20PP011	PUMP, P&B SUMP NORTH WEST #1	PUMP & BLOWE						DIRECT_DRIVE		N/A		SUBMERSIBLE		
20PP012	PUMP, P&B SUMP NORTH WEST #2	PUMP & BLOWE	R ROOM	PACO		2003		DIRECT_DRIVE		N/A		SUBMERSIBLE		
20PP013	PUMP, SUMP #2, PLANT DRAINAGE	FERRIC CHLORI		VAUGHN		2002		GE DIRECT_DRIVE	Mechanical	N/A	HTC_SUPREME	SUBMERSIBLE		200
20PP014	PUMP. SUMP . PLANT DRAINAGE SPA.			VAUGHN		2016	PLANT DRAINA	GE DIRECT_DRIVE	Mechanical	N/A	HTC_SUPREME			200
20PP015	PUMP, FERRIC #1	FERRIC CHLORI		MILTON RO		2011		DIRECT_DRIVE		N/A	HTC_SUPREME	. POSITIVE_DISPL		
20PP016	PUMP, FEBRIC #2	FERRIC CHLORI	DETANK	MILTON RO		2005		DIRECT_DRIVE		N/A	HTC_SUPREME.	_		
20PP017 20PP018	PUMP, FERRIC SPARE PUMP, PRIMARY SLUDGE SPARE	GREENHOUSE		MILTON RO		2005		DIRECT_DRIVE	Dealities	N/A	HTC_SUPREME	POSITIVE_DISPL		60
0000010	DUND DDWADY CUIDCE,#X	DDIMADY ADDA		MUTNU IND		2000		BELT AND PULL.	Packing	(3) 3 5/750	NZA KLZA	POSITIVE_DISPL		60
	of 196	Y		0.1		Y								
Parent Links (1)			Child Links (0) Addresses (0)			Linked Eiles (2)			J	Collect Medices (C)				
	Work Orders (219)			Addresses	(U)			Pa <u>i</u> ts (0)				Critical Notices (0	J	
w Work Order	Open Work Order													
WO_NUMBE	ER TEMPLATE TYPE	DATE_OPENED	DATE_SCHEDUL.	PRIORITY	COMMENTS	DATE_CLOSED	CLOSED_BY WI	ORK_ORDER_ID ROU	TE_ORDER	DATE_COMPLET FIEL	D_STATUS LAST	LUPDATED UPDAT	ED_BY EXP	IRED
Þ	70957 PRIMARY SLUD PREVENTATIVE	4/18/2017	5/1/2017	09							4/18	/2017 3:08:4 Scott		
	70595 PRIMARY SLUD PREVENTATIVE	3/29/2017	4/3/2017	09							4/5/	2017 7:27:46 franklin	_k	
	69533 PRIMARY SLUD PREVENTATIVE	2/28/2017	3/6/2017	09								/2017 10:46: franklin	-	
	68838 PRIMARY SLUD PREVENTATIVE	1/27/2017	2/1/2017	09						1/31/2017		2017 6:10:27 DUGUI	-	
	68153 PRIMARY SLUD PREVENTATIVE	12/21/2016	12/27/2016	09			KOLTE_K			12/27/2016		/2017 10:25: KOLTE	-	
_		11/17/2016	11/29/2016	09			KOLTE_K			12/1/2016		/2017 10:26: KOLTE,		
	66306 PRIMARY SLUD PREVENTATIVE	10/26/2016	11/3/2016	09			KOLTE_K			11/3/2016		/2017 10:27: KOLTE	-	
_	65426 PRIMARY SLUD PREVENTATIVE	9/29/2016	10/4/2016	09			KOLTE_K			10/4/2016		/2017 10:26: KOLTE	-	
	64362 PRIMARY SLUD PREVENTATIVE 63955 PRIMARY SLUD PREVENTATIVE	8/23/2016 7/29/2016	9/2/2016 8/1/2016	09			KOLTE_K KOLTE K			9/2/2016 1/27/2017		/2017 10:25: KOLTE		
_	62807 PRIMARY SLUD PREVENTATIVE	6/16/2016	6/27/2016	09			KULTE_K KOLTE K			1/27/2017		/2017 10:25: KOLTE /2017 10:25: KOLTE		
-	61984 PRIMARY SLUD PREVENTATIVE	5/24/2016	5/31/2016	09			KOLTE_K			1/27/2017		/2017 10:25: KOLTE	-	
_	61252 PRIMARY SLUD PREVENTATIVE	4/26/2016	5/2/2016	09			KOLTE_K			5/2/2016		/2017 10:26: KOLTE	-	
_	CO207 DDIMARY CLUD DDEV/ENTATIVE		2/20/010	00			KOLTE K			1/27/2010		2017 10:20 KOLTE		

SCADA Data

Rehabilitate

Replace

Asset level VS Project level decision making


Asset level VS Project level decision making

Problem: Over the next 10 years 10,000 assets will reach their the end of useful life

- How do we develop a strategy to replace groups of assets
- In-house Maintenance VS Capital Project

Project Development

Current Status

- Improve data collection (missing assets and attributes)
- Improve cost estimates (replacement and rehabilitation values)
- Migrating to new CMMS which includes an AM module
- Developing reports to analyze historic data to improve O&M efficiencies

Making the right decision at the right time at the right costs for the right reasons

 Reduce cost of ownership to an acceptable level of risk while maintaining established levels of service

QUESTIONS?

City of Livermore Water Resources Division

101 W. Jack London Blvd.Livermore, CA 94551925-960-8100wrd_info@cityoflivermore.net

